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ABSTRACT
In pattern recognition systems it is usually necessary

to detect different image details, like edges, lines, corners,
blobs, etc. For this purpose a bank of special filters, match-
ing each individual detail can be used. As the details usually
are oriented in different directions and have different scales,
the image processing leads to many convolution operations.
The complex 2D matched filter (CMF) is an angle invariant
line detection filter, which also provides additional informa-
tion about orientation of detected lines.

In this paper we follow the idea of complex matched fil-
tering, and develop generalized complex matched filtering
(GCMF) approach, which is a whole bank of different an-
gle invariant filters, where each filter is denoted by the order.
These filters can be used to detect a broader range of image
details: edges, lines, line intersections and corners; and, like
its predecessor, the GCMF provides additional information
about the detected features − the orientation angle. Each
kernel from the GCMF bank is analyzed in polar coordinates
and the specifics of detail detection are explained. A method
of generating GCMF normalized kernels of arbitrary order is
proposed. GCMF algorithm is presented and its performance
is demonstrated on test images.

1. INTRODUCTION

Fast feature extraction is still a significant problem in most
image processing systems [3, 2]. After the image is obtained
it is important to detect the desired objects and save them for
further analysis. Usually the details are extracted using the
convolution with a mask that is similar to the desired object.
This approach is called matched filtering (MF) [1]. While
being very effective at extracting an object from noise, it can
be very slow for 2D signals, because of the need to rotate the
filter kernel.
In our previous work [4] we have introduced an angle in-
variant method, called complex 2D matched filtering (CMF)
which is based on the MF approach. In addition to ability to
detect lines in images, CMF also obtains their angular orien-
tation. CMF uses only one complex kernel instead of many
rotated masks, therefore, it is more computationaly efficient
than the MF approach.
This paper is devoted to the further development of the CMF
idea and the analysis of its specific properties. As a result, the
generalized complex matched filtering (GCMF) approach is
presented. For each used order GCMF requires one convo-
lution operation with the complex kernel, therefore, it can
be used in embedded systems when different lines and their
crossings have to be detected.

a) K=1 b) K=2 c) K=3 d) K=4 e) K=5

Figure 1: MF masks (MK) of first 5 orders, used by CMFK

2. COMPLEX MATCHED FILTERING

For consistency with the GCMF notation, equations that are
given here, will contain the index ”2”, because CMF is the
second order filter from the GCMF bank. As mentioned be-
fore, the CMF is based on the MF approach, and in its full
form requires MF of the image with a line-detecting mask
(see Fig.1b) of all non-recurring directions φ2,n ∈ [0;π),
where n is the index number. As a result, the set of MF
scalar responses of s2,n(φ2,n;x,y) are obtained in each pixel.
The main idea of CMF is the principle of combining these re-
sponses into a single complex value (matching intensity vec-
tor [4]) that describes the filtered object.
For this purpose:
1. The scalar responses are transformed into the complex

ones by assigning the phase value of 2φ2,n.

c⃗2,n(φ2,n) = s2,n(φ2,n)exp( j2φ2,n); (1)

2. The complex responses are summed together:

c⃗2 =
N−1

∑
n=0

c⃗2,n(φ2,n); (2)

3. Finally, matching intensity vector is acquired from the
sum by decreasing its angle by half.

The short form of CMF utilizes the property of superposition,
and reduces the operations count by combining multiple MF
masks M2(x,y;φ2,n) into one complex mask M2(x,y).

M2(x,y) =
N−1

∑
n=0

e j2φ2,n M2(x,y;φ2,n) (3)

In the next sections all mentioned steps are discussed thor-
oughly, using equations in general form.

3. GENERALIZATION OF CMF

Further, K will denote the order of complex matched filter
(CMFK), matched filter mask (MK), or the complex mask
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a) K=1 b) K=2 c) K=3

Figure 2: Rotated MF masks with opposite behavior

(MK). The extended approach needs a specific set of MF
masks to be generated. We begin building (MK) masks with
one line that connects the center of the mask with its edge
(Fig. 1a). This is the first order MF mask, or (M1). Then we
add more lines (one by one), and each time distribute all lines
regularly to form even angles between them. Each added line
increases the order of the MF mask (MK). The Fig. 1 shows
the first 5 orders of MF masks (M1−M5) that will be used by
the CMF of the orders CMF 1 − CMF5.

Each MF mask MK(φK,n) is rotated around its center in
the angular interval of φK,n ∈

[
0; 2π

K

)
to avoid filtration with

the identical kernel more than once:

φK,n =
n
N

2π
K

(4)

where n = 0...(N-1), N - total number of MF mask angles
used (specifies the angular precision). The MF response at
the particular point (x0,y0) can be formally expressed as:

sK,n(x0,y0;φK,n) =∫∫
D

f (x,y)MK(x− x0,y− y0;φK,n)dxdy (5)

where f (x,y) is the image being filtered, and D - the MF
mask’s MK overlay area.
After MF at different angles, the scalar MF responses ob-
tained sK,n(φK,n) are transformed into complex responses
c⃗K,n(φK,n) by assigning the phase value.
The generalized approach assigns opposite phases to the MF
responses from masks that have opposite behavior, which, in
general, is characteristic for pairs of MF masks of the same
order with an angular difference of ∆φK = 180◦

K . Figure 2
shows three examples of rotated MF masks with opposite
behavior. It is obvious that when the angle of K ·φK,n is as-
signed to the matched filter reactions, all MF reaction pairs
behaving contrarily, are transformed into antiphase complex
reactions c⃗K,n, because K ·∆φK = K · 180◦

K = 180◦:

c⃗K,n(φK,n) = sK,n(φK,n)exp( jKφK,n) (6)

The GCMF result is obtained by summing all the complex
reactions together:

c⃗K =
N−1

∑
n=0

c⃗K,n(φK,n) (7)

a) K=1 b) K=2 c) K=3 d) K=4 e) K=5

Figure 3: First five GCMF kernels generated using Eq. (16)
and (17): the top row is the real part, the bottom row - the
imaginary part

Using generalized equation (6), (7) is rewritten as:

c⃗K(x0,y0) =

N−1

∑
n=0

e jKφK,n

∫∫
D

f (x,y)MK(x− x0,y− y0;φK,n)dxdy =

∫∫
D

f (x,y)

[
N−1

∑
n=0

e jKφK,n MK(x− x0,y− y0;φK,n)

]
dxdy

(8)

It leads to the conclusion that the complex sum c⃗K(x,y) can
be obtained using one convolution operation with the com-
plex kernel:

MK(x,y) =
N−1

∑
n=0

e jKφK,n MK(x,y;φK,n) (9)

The last expression defines the GCMF mask of order K, and
extends the previous concept of complex 2D matched filter-
ing.

4. GCMF KERNEL ANALYSIS

For maximum angular precision, φ is used instead of φK,n,
and summation in eq. (9) is replaced with the integration by
dφ :

MK(x,y) =

2π/K∫
0

e jKφ MK(x,y;φ)dφ (10)

The analysis of GCMF kernel MK is done in polar coordi-
nates (ρ,θ), by analyzing the eq. (10). For convenience, let
the filter kernels be located at (0,0), and the point of interest
to be (ρ,θ). The GCMF kernel value MK(ρ,θ ) is obtained
using the rotated MF mask MK(x,y;φ) points MK(ρ,θ −φ)
that are mapped at (ρ,θ):

MK(ρ,θ) =

2π/K∫
0

e jK·φ ·MK(ρ,θ −φ)dφ (11)

Values of the particular points of the MF mask can be ob-
tained using the Dirac Delta function as:

MK(ρ,θ −φ) =
2π∫
0

MK(ρ,τ) ·δ (ρ,τ − [θ −φ])dτ (12)
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where τ is the angular variable for MF mask ”scanning”.
Combining (11) with (12), leads to:

MK(ρ,θ) =
2π/K∫
0

e jKφ
2π∫
0

MK(ρ,τ)δ (ρ,τ − [θ −φ ])dτ

dφ
(13)

which is solved by rearranging its elements as:

MK(ρ,θ) = e jKθ ·
2π∫
0

MK(ρ,τ)e− jKτ dτ (14)

Equation (14) defines the GCMF kernel. This equation elim-
inates the need to rotate MF masks, like it was done previ-
ously in (9).
The right part of (14) consists of two multipliers:

• e jK·θ is the angular component of the complex mask.
This component is order dependent.

• r(ρ) =
2π∫
0

MK(ρ,τ) ·e− jK·τ ·dτ is called as radial compo-

nent of the complex mask. This component varies only with
distance from the center of the complex mask and defines the
magnitude of the angular component.

The scalar product of two complex masks demonstrates the
orthogonality of GCMF kernels and leads to the conclusion
that each CMFK extracts unique information c⃗K(x,y) from
the filtered image.

(MK ;M∗
L) = (e jKθ r(ρ);e− jLθ r∗(ρ))

= δK,L2π
P∫

0

r2(ρ)ρdρ
(15)

where δK,L is the Kronecker′s delta, r(ρ) = Re[r(ρ)], P is
complex mask radius, and ∗ denotes the complex conjugate.
The (15) with K = L describes the squared norm of GCMF
kernel (14). By normalizing (14), the equation for efficient
generation of orthonormal GCMF kernels is obtained:

MK(ρ,θ) =
e jKθ r(ρ)√

2π
P∫
0

r2(ρ)ρdρ

(16)

The radial component r(ρ) is chosen depending on the scale
of features to extract, and, to preserve orthonormality, it must
be the same for the whole set of GCMF kernels if many dif-
ferent orders are used together. For example, the following
radial component might be used:

r(ρ) = exp
[
− (ρ −1.5σ)2

σ2

]
+ exp

[
− (ρ +1.5σ)2

σ2

]
(17)

Then, the GCMF would detect details with a diameter of ap-
proximately 5σ , but P should be at least 3.5σ . Figure 3b is
similar to the complex mask, proposed in [4].

Filters with kernels that are similar to GCMF have been
introduced previously. For example, Gaussian derivative

kernels in [7] are generated as the linear combination of the
Cartesian derivatives of Gaussian function L. For example,
Lx =

∂L
∂x and Ly =

∂L
∂y are similar to CMF1 complex kernel’s

real and imaginary parts (Fig.3a); Lxy = ∂ 2L
∂x∂y is similar to

CMF2 complex kernel’s imaginary part (Fig. 3b). Despite of
this similarity, we, however, provide different bank of ker-
nels, and analyze them in polar coordinate system, not in
Cartesian. Another similar approach can be found in [6, 8, 9].
These filters are called radial spiculation filters (RSF), and
are of two types: Sine RSF, and Cosine RSF. The CRSF and
SRSF are defined by equations:

CRSF = e−
(ρ−ρ0)

2

2σ2 · cos(K ·θ) (18a)

SRSF = e−
(ρ−ρ0)

2

2σ2 · sin(K ·θ) (18b)

After applying the Euler’s formula to (18), we acquire:

CRSF+ j ·SRSF = e−
(ρ−ρ0)

2

2σ2 · e jKθ (19)

Note that (19) is a particular case of GCMF kernel (13),

where e−
(ρ−ρ0)

2

2σ2 is the radial component r(ρ). Therefore, all
analysis from the next sections of this paper is also applica-
ble to RSF.
The difference between our approach and RSF is that after
filtering they analyze only the magnitude of the result to get
the information about density of spiculated masses. We also
analyze the phase of calculated matching intensity vectors to
obtain additional information about extracted features (angu-
lar orientation).

(a) Line in Cartesian (left) and polar (right)

(b) Neighborhood function and its Fourier series

Figure 4: Example of line detection with CMF2
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(a) Line intersection in Cartesian (left) and polar (right)

(b) Neighborhood function and its Fourier series

Figure 5: Line intersection detection with CMF3

5. GCMF NEIGHBORHOOD FUNCTION

Using GCMF Eq. (14) we can rewrite the Eq . (8) to formally
describe the complex matched filtering process as:

c⃗K(x0,y0) =
∫∫
D

f (x,y)MK(x− x0,y− y0)dxdy (20)

The complex mask MK = e jK·θ · r(ρ) is located at the point
of interest (x0,y0) and is described using polar coordinates
(ρ,θ) that are mapped onto (x,y) with center in the (x0,y0).
Further, only these mapped polar coordinates are used:

c⃗K(x0,y0) =
∫∫
D

f (ρ,θ)e jKθ r(ρ)ρdρdθ

=

2π∫
0

 P∫
0

f (ρ,θ) · r(ρ)ρdρ

e jKθ dθ
(21)

The value in square brackets is further denoted as the pixel’s
(x0,y0) neighborhood function:

R(θ) =
P∫

0

f (ρ,θ) · r(ρ)ρdρ (22)

CMFK calculates K-th coefficient of the neighborhood
function’s complex Fourier series:

c⃗K(x0,y0) =

 2π∫
0

R(θ)∗ · e− jK·θ dθ

∗

(23)

Fig.4 and Fig.5 demonstrate how different image details ap-
pear as neighborhood function harmonics, which can be de-
tected by (23). For example, note the gradient in Figure 4
appearing as the first harmonic and the line, appearing as the
second harmonic of R(θ); or how the third harmonic of R(θ)
indicates the vessels intersection point in Figure 5.

6. MATCHING INTENSITY VECTORS

After CMFK , the orientation of the detected feature is ob-
tained by solving the proportion between the phase θ of the
corresponding R(θ) harmonic and the detail’s orientation an-
gle ψ as: ψ = θ/K.

Therefore, the following algorithm of GCMF is proposed:
1. c⃗K = cK · e jθ =CMFK [ f (x,y)],
2. v⃗K = vK · e jψ = cK · e j θ

K .

Vectors v⃗K are called matching intensity vectors and show the
intensity of the mask’s correlation with the image fragment
as well as the orientation of the detected feature. The CMF1
is similar to the first two steps of the Canny Edge detection
algorithm, that include gradient calculation of the smoothed
input image [3]. The first order matching intensity vectors
v⃗1 show the direction, and the rate of change of image pixels
intensity, and are normal to the object edges.
The CMF2 is used to detect blood vessels in [5]. The second
order matching intensity vectors v⃗2 point in the direction of
detected lines.
Other GCMF can be used to detect line crossings. In cases
of K ≥ 3, the obtained phase ψ = Arg[⃗vK(x0,y0)] describes
the direction of only one of the intersecting lines (the one
in the angular interval of [0; 2π

K ). The direction of the oth-
ers can be obtained as ψ ± k · 2π

K , where k = 1,2,3. . . Figure
6 demonstrates the relation between the phase of matching
intensity vector, and the directions of intersecting lines, for
case of K = 3.

Figure 6: Matching intensity vector phase

For demonstration purposes this was done in Fig. 7 c)
and d), which shows the mesh vertexes, detected by CMF4.
Alternatively, Fig. 7 a) and b) demonstrate blood vessel de-
tection by CMF2. In each case we obtain additional infor-
mation of the detail orientation, performing only one convo-
lution operation with the complex mask. The Halo artifact,
mentioned in our earlier work [5] is also present in the higher
order (K > 2) CMFK , further research is therefore necessary
on its removal. Matching intensity vectors that represent the
Halo artifact are oriented differently from vectors of the de-
sired objects, and, for demonstration purposes, in Fig. 7 b)
and d) colored in gray.
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(a) Input image (b) Fragment of CMF2 result

(c) Input image (d) Thresholded CMF4 result

Figure 7: Examples of CMF2 and CMF4

7. CONCLUSIONS

We have described a generalized complex 2D matched fil-
tering approach for the regular line-like feature, that include
edges, lines, line crossings and corners, extraction from im-
ages. A mathematical form for filter kernel generation and
it’s relationship with matched filtering is explained. Us-
ing only one convolution operation with the complex mask,
GCMF is able to detect corresponding details of different ori-
entations, and also scales, if an appropriate radial component
is chosen.
In section 5, the dual interpretation of GCMF has been
shown: image convolution with complex mask is equivalent
to the calculation of each pixel’s neighborhood function’s
complex Fourier series coefficients.
Among the previously known filtering approaches, the most
attractive property of GCMF approach is the ability to exe-
cute one convolution with the generated complex mask, ex-
tract the line-like objects and obtain their angular informa-
tion, therefore simplifying the segmentation task.
Higher order filters (K > 1) produce the unwanted Halo arti-
fact around the detected objects, so further research is neces-
sary on how to remove it, or use it in our advantage.

Also, studies could be carried out into how different ra-
dial components or different orthogonal bases for angular
component of the complex mask affect the filter properties
and performance.
CMF2 was succesfuly used for the extraction of palm blood
vessels from images in biometric system in [5].
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