Palm Vein Biometrics Based on Infrared Imaging and Complex Matched Filtering

Modris Greitans, Mihails Pudzs, <u>Rihards Fuksis</u> Institute of Electronics and Computer Science Dzerbenes 14, Riga, Latvia e-mail: *Rihards.Fuksis@gmail.com*

Research is supported by:

ESF project Nr. 1DP/1.1.1.2.0/09/APIA/VIAA/0 20, co-financed by EU

Latvian State research program in innovative materials and technologies

The 12th ACM Workshop on Multimedia and Security

September 9-10, Rome, Italy

Rihards Fuksis The 12th ACM Workshow on Multimedia and Security

Motivation

Problem

- Identity fraud
- •Linking physical person to a digital identity

Solution

•Biometrics

Why Palm Veins?

- Invisible in daylight
- •Hard to falsify
- •Unique structure
- •Allow distinguish twins
- •Easy to use

Rihards Fuksis

Rihards Fuksis

Imaging Methods

Acquired Images

Visible light

Reflection method

Transmission method

Rihards Fuksis The 12th ACM Workshop on Multimedia and Security

Vessel Analysis

Vessel cross section can be approximated with Gaussian function

Rihards Fuksis The 12th ACM Workshop on Multimedia and Security

Matched Filtering

Matched filtering

$\int g_{\phi}(x, y) = -\exp(-x^{\prime 2}/2\sigma_x^2)$

Matched filtering - SLOW

Rihar

Complex Matched Filtering

For further information:

M.Greitans, M.Pudzs, R.Fuksis. "Object Analysis in Images Using Complex 2d Matched Filters", Proceedings of the IEEE Region 8 Conference EUROCON 2009. Saint–Petersburg, Russia, May, 2009., pp. 1392-1397.

INSTITUTE OF ELECTRONICS AND COMPUTER SCIENCI

Rihards Fuksis The 12th ACM Workshop on Multimedia and Security 9/20

CMF Result

After CMF we can construct the most significant vector set

Rihards Fuksis

- •Find max response
- •Save the vector
- Exclude neighbor vectors from further processing
 Continue

- •Find max response
- •Save the vector
- Exclude neighbor vectors from further processing
 Continue

- •Find max response
- •Save the vector
- Exclude neighbor vectors from further processing
 Continue

- •Find max response
- •Save the vector
- Exclude neighbor vectors from further processing
 Continue

Comparison of Vectors

Calculation of similarity:

- 1. Pair of longer vectors have greater influence on similarity
- 2. Closely oriented vectors have greater impact
- 3. Closer the vectors more considerable contribution

3 Impact factors: magnitudes angles distance $s_{nk}^{(AB)} = |\vec{v}_n^B| \cdot |\vec{v}_k^A| \cdot |\cos \angle (\vec{v}_n^B; \vec{v}_k^A)| \cdot \exp\left(-\frac{r_{n,k}^2}{\sigma^2}\right)$

Comparison of Vector Sets

Algorithm is not rotation and scale invariant – we have used the palm fixing stand for accurate image acquisition without shifts

Construction of the Database

Database of 400 images from 50 personsResult of comparison for 2 cases

Comparison with Database

INSTITUTE OF ELECTRONICS AND Rihards Fuksis COMPUTER SCIENCE

Results of database evaluation

image number

Thresholded similarity indexes matrix, using 64 of 64 vectors, EER=0.17%

Each image is compared with each other image in database

Each black square represents the 8 images of each person

Black dots represent the FA White dots represent the FR

image number

Rihards Fuksis

Experimental results

* H. Chen, G. Lu, and R. Wang. A new palm vein matching method based on icp algorithm. In *ICIS'09: Proceedings of the 2nd International Conference on Interaction Sciences, pages 1207–1211, New York, NY,* USA, 2009. ACM.

Rihards Fuksis The 12th ACM Workshop on Multimedia and Security

Conclusions

Thank you!

Rihards Fuksis

The 12th ACM Workshop on Multimedia and Security 20/20