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Weighted Multi-scale Local Binary Pattern 

Histograms for Face Recognition

LBP – Local Binary Patterns

3 x 3 

Neighborhood 

from input 

image

Result of LBP 

transformation
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Calculate histogram for each region

Stack 

histograms into 

a single feature 

vector
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Recognition stage:

• compare LBP histogram of the input 

image with histograms from the database 

• nearest neighbor classifier (NNC) is used

(Example: Euclidean distance)

Database

Input image
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Recognition stage
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Class 2

Class 1

Face recognition task

 ANN, SVM can be used

 Lot’s of training data for each class

 Number of classes not high

 not enough data for ANN, SVM (!)

 few training samples per class

 Number of classes is high(1000 FERET)

 Nearest Neighbour Classifier is usually used
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Is Nearest Neighbor Classifier (NNC)

the best solution?

Why NNC is usually used? Problem:

•Having plenty of classes / persons

•Only a few training examples per class / person

Artificial Neural Networks

Support Vector Machines

...

Weighted Nearest 

Neighbor Classifier (WNNC)

Utilize statistical information

from all classes

Possible improvement
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A Mini-Batch Discriminative Feature 

Weighting Algorithm

LBP image

Blocks

Proposed in two levels: feature and block weighting:

Presented approach amplifies the features/blocks, which are more 

relevant for the recognition by adjusting the weights.

Weights are determined in the learning process.

A

B
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A Mini-Batch Discriminative Feature 

Weighting Algorithm
Only TWO training examples per class are needed (Photo 1 & 2)

d – Euclidean 

distance 

between 

weighted

histograms
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A Mini-Batch Discriminative Feature 

Weighting Algorithm
Only two training examples per class are needed (Photo 1 & 2)

d – Euclidean 

distance 

between 

weighted

histograms
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A Mini-Batch Discriminative Feature 

Weighting Algorithm
Only two training examples per class are needed (Photo 1 & 2)

d – Euclidean 

distance 

between 

weighted

histograms
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selected randomly: mini-batch

inter-class distance

2013 International Conference on Applied Mathematics and 

Computational - Venice, Italy, September 28-30 



11

A Mini-Batch Discriminative Feature 

Weighting Algorithm
Only two training examples per class are needed (Photo 1 & 2)

d – Euclidean 

distance 

between 

weighted

histograms
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Photo 

1 d31 d33

Person 

M

Photo 

1 dM2 dMM

selected randomly: mini-batch

d11/d13 - 1

d22/d2M - 1

d33/d31 - 1

dMM/dM2 - 1
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A Mini-Batch Discriminative Feature 

Weighting Algorithm
Only two training examples per class are needed (Photo 1 & 2)

d – Euclidean 

distance 

between 

weighted

histograms
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s
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S - sigmoid

+

J(weights) - cost function

MINIMIZE
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A Mini-Batch Discriminative Feature 

Weighting Algorithm

d – Euclidean 

distance 

between 

weighted

histograms
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Learning data selection:

Selected randomly at 

each iteration

Select smallest inter-

class distances for all 

persons after each N

iterations

1

2
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A Mini-Batch Discriminative Feature 

Weighting Algorithm

Learning data selection:

Selected randomly at 

each iteration

Select smallest inter-

class distances for all 

persons after each N=20

iterations

1

2

1

2
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A Mini-Batch Discriminative Feature 

Weighting Algorithm
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Each face is described 

with N=16384 LBT 

parameters.

Lets simplify the task:

Lets consider that each 

face (class) is described 

with 2 parameters and 

we have only 3 persons

(classes) in the 

database.
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A Mini-Batch Discriminative Feature 

Weighting Algorithm
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Before optimization:

 Precision 100%

 each class is 

described with 2

parameters

After optimization:

 Precision 100%

 each class is 

described with 1

parameter

Data compression with 

same precision
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A Mini-Batch Discriminative Feature 

Weighting Algorithm
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Each face is described 

with N=16384 LBT 

parameters.

Lets simplify the task:

Lets consider that each 

face (class) is described 

with 2 parameters and 

we have 5 persons

(classes) in the 

database.
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A Mini-Batch Discriminative Feature 

Weighting Algorithm
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Before optimization:

 Precision 60%

 each class is 

described with 2 

parameters

After optimization:

 Precision 100%

 each class is 

described with 2

parameter

Recognition accuracy is 

improved
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Results on FERET face database
Input face Block weights

High

Low
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MIT and Harvard University research:

Title: 19 important results regarding face recognition by humans. 

One of the facts was: "of the different facial features, eyebrows are 

among the most important for recognition“.
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Results on FERET face database

fa and fb

sets

MSLBP MSLBP + 

feature 

weighting

MSLBP + 

block 

weighting

“Optimal”

learning 

data

96,8 % 98.1 % 99.2 %
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Number of persons in the database is almost 1000

2 frontal face images per person are available
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Thank You!
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