

EIROPAS SAVIENĪBA

Presenter: Olegs Nikisins

Institute of Electronics and Computer Science, Riga, Latvia. olegs.nikisins@edi.lv

Author: Olegs Nikisins

Project: Multimodal biometric technology for safe and easy person authentication 2DP/2.1.1.1.0/APIA/VIAA/098

2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30 d ا

Weighted Multi-scale Local Binary Pattern Histograms for Face Recognition

2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30

Weighted Multi-scale Local Binary Pattern Histograms for Face Recognition

Database

Recognition stage:

Input image

 compare LBP histogram of the input image with histograms from the database
 nearest neighbor classifier (NNC) is used (Example: Euclidean distance)

2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30

Recognition stage

ANN, SVM can be used
Lot's of training data for each class
Number of classes not high

- not enough data for ANN, SVM (!)
- Few training samples per class
- Number of classes is high(1000 FERET)
- Nearest Neighbour Classifier is usually used

Is Nearest Neighbor Classifier (NNC) the best solution?

Why NNC is usually used? Problem: Having plenty of classes / persons Only a few training examples per class / person

Proposed in two levels: feature and block weighting:

LBP image

Presented approach amplifies the features/blocks, which are more relevant for the recognition by adjusting the weights. Weights are determined in the learning process.

Only TWO training examples per class are needed (Photo 1 & 2)

d – Euclidean distance between <mark>weighted</mark> histograms		Person 1	Person 2	Person 3	Person M
		Photo 2	Photo 2	Photo 2	Photo 2
Person 1	Photo 1				
Person 2	Photo 1				
Person 3	Photo 1				
Person M	Photo 1				

Only two training examples per class are needed (Photo 1 & 2)

d – Euclidean distance between <mark>weighted</mark> histograms		Person 1	Person 2	Person 3	Person M	
		Photo 2	Photo 2	Photo 2	Photo 2	
Person 1	Photo 1	d ₁₁	intra-class distance			
Person 2	Photo 1		d ₂₂			
Person 3	Photo 1			d ₃₃		
Person M	Photo 1				d _{MM}	

2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30

Only two training examples per class are needed (Photo 1 & 2)

2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30

Only two training examples per class are needed (Photo 1 & 2)

11

2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30

Only two training examples per class are needed (Photo 1 & 2)

d – Euclidean distance between <mark>weighted</mark> histograms		Person 1	Person 2	Person 3	Person M		
		Photo 2	Photo 2	Photo 2	Photo 2	Learning dat	
Person 1	Photo 1	d ₁₁		d ₁₃	d _{1M}	1 Selected rar each iteratio	
Person 2	Photo 1		d ₂₂	d ₂₃	d _{2M}	Select small	
Person 3	Photo 1	d ₃₁	d ₃₂	d ₃₃		class distand persons afte	
Person M	Photo 1		d _{M2}	d _{M3}	d _{MM}	iterations	

domly at n

est interces for all r each N

COMPUTER SCIENCE

2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30

14

Each face is described with N=16384 LBT parameters.

Lets simplify the task: Lets consider that each face (class) is described with 2 parameters and we have only 3 persons (classes) in the database.

COMPUTER SCIENCE

Before optimization:

 Precision 100%
 each class is described with 2 parameters

After optimization:
▶ Precision 100%
▶ each class is described with 1 parameter

Data compression with same precision

COMPUTER SCIENCE

40 **Before optimization:** After optimization Precision 60% 35 each class is described with 2 30 parameters 25 After optimization: Precision 100% 20 each class is 15 described with 2 parameter class 2 10 class 5 ^{త్ర}class 3 Recognition accuracy is class 4 improved class ' 15 5 10 2013 International Conference on Applied Mathematics and 18 Computational - Venice, Italy, September 28-30

20

COMPUTER SCIENCE

Results on FERET face database Input face Block weights

MIT and Harvard University research:

Title: 19 important results regarding face recognition by humans. One of the facts was: "of the different facial features, eyebrows are among the most important for recognition".

> 2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30

Results on FERET face database

Number of persons in the database is almost 1000 2 frontal face images per person are available

fa and fb	MSLBP	MSLBP +	MSLBP +
sets		feature	block
		weighting	weighting
"Optimal" learning data	96,8 %	98.1 %	99.2 %

2013 International Conference on Applied Mathematics and Computational - Venice, Italy, September 28-30

