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Abstract

The paper introduces the combination of algorithms
for possibly the first bimodal biometric system capable of
touch-less capturing of two biometric parameters, palm
veins and palm creases, synchronously with a single image
sensor. The architecture of the proposed system is based
on the Detection, Alignment and Recognition pipeline. The
ROI detection and alignment stages are simplified with effi-
cient combination of hardware (lighting sources) and soft-
ware. A new feature descriptor, namely Histogram of Vec-
tors is proposed in the recognition stage. Since the captur-
ing of images requires special conditions, the database in-
cluding images of 100 individuals and ground-truth data is
introduced. The analysis of performance of the system uti-
lizes the database leading to detailed understanding of the
error propagation in the automatic recognition pipeline.

1. Introduction
A growing interest in biometric systems capable of user

authentication without physical contact (touchless systems)
can be observed in modern palm biometrics. These sys-
tems are hygienic, compact, and more convenient to use
than contact systems. However, due to additional degrees
of freedom in palm placement, the accuracy of touch-less
systems is decreased. These systems face many challeng-
ing tasks. Firstly, the presence of a palm in the field of
view must be detected (palm detection). Secondly, region
of interest (ROI) must be localized, because a palm can
be captured under different orientations and distances when
no palm fixing stand is used. To increase precision, more
than one biometric feature is often used [16, 2, 11]. When
features of two modalities are used (e.g., palm veins and
creases), systems are referred to as bimodal. Bimodal ap-
proaches allow to avoid typical limitations of unimodal sys-
tems, like vulnerability to spoofing attacks and low level
of security. These features must be acquired and processed
properly. We mention various solutions to these problems
and propose working combination of algorithms for touch-

less bimodal palm biometric system.

An extracted ROI implies presence of a palm in the im-
age. Therefore, in the literature ROI selection is addressed
more frequently than palm detection. For the same reason,
we analyze only the ROI selection methods, but in section 3
both – palm detection and ROI extraction algorithms – are
proposed. In contact systems a region of fixed location and
fixed scale in the input image can serve as ROI. In touch-
less systems more complicated algorithms are necessary for
ROI selection due to possible variations in locations, scales
and rotations. Palm contour and/or finger valley (finger-
gap) points [7, 17] can serve as key-points for ROI selec-
tion. In this case ROI is usually rectangular. However, to
reduce errors caused by incorrect determination of palm an-
gle, palm ROI can also be expressed using polar-like coor-
dinates [10]. To select ROI we use finger gaps as key-points
because they can be detected in an efficient way and can
also be used to determine whether the image contains the
palm. We also use free-shaped ROI that maximizes area of
the palm used in the extraction of the biometric information.

Feature processing is an important topic that should be
discussed in detail. In outlined biometric system, each bio-
metric feature is acquired as image. Near-infrared (NIR)
and visible light (VL) images of the palm are correlated
since they represent the same region of the palm. It is clear
that each such image always contains some combination of
palm features of different modalities, only in different pro-
portions. For example, when capturing palm in the VL, in-
put image contains information about creases, ridge struc-
ture, skin pigmentation, geometry, and even vein pattern
(slightly visible); whereas, palm images captured in the NIR
spectrum depict palm geometry, vein structure and crease
pattern (slightly visible). There are several approaches to
feature processing. The most widespread approach is to
process both images (VL and NIR) directly [2, 11, 9], ne-
glecting appearance of features of other modalities in the
input signal. Otherwise, features of different modalities can
be either combined together [16], either separated [6] be-
fore processing. A process of combining feature informa-
tion from different sources into a single image before pro-
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Figure 1. Architecture of the proposed system.

cessing is called sensor-level fusion. In [16] sensor-level fu-
sion improved recognition accuracy because it increased the
amount of detectable features (junction points). All men-
tioned approaches work because any repeatable pattern, ac-
quired from a person’s palm, can serve as biometric feature
even if it depicts multiple modalities [8]. However, we think
that the benefit from processing combinations of features of
different modalities depends on the feature extraction and
comparison approach. We further show that if histogram-
based methods, like proposed algorithm Histograms of Vec-
tors (HOV), are used, separation of vein and crease fea-
tures before processing can show an improved recognition
results, compared to direct image processing.

We develop and test our described algorithms in an
FPGA-based system, shown in Figure 2.

The architecture of the proposed system is based on the
Detection, Alignment and Recognition pipeline [14] and is
shown in Figure 1. Image capturing module that is used to
captures single color image and acquire two grayscale in-
put images for further processing, is described in Section 2.
Section 3 covers palm detection and ROI extraction mod-
ule that is used to acquire palm finger gap coordinates and
ROI binary mask. Feature extraction and comparison mod-
ule incorporates an image filter (algorithms for direct image
processing and modality separation are discussed) and HOV
for feature extraction and further processing — Section 4.
In section 5, performance of different ROI selection and fea-

ture processing approaches is analyzed using our collected
database of 2000 images (100 persons, 20 images per per-
son).

2. Image capturing principle

We utilize the technique of bimodal biometric feature
acquisition using a single RGB image [6]. To ensure that
palm features of different modalities – veins and creases –
appear more expressed in the appropriate color channels –
red (R) and blue (B) – the palm is illuminated with specific
dichromatic light (a combination of blue and near-infrared
(850nm) light with specific intensities) during image acqui-
sition. The advantage of this approach is that information
about both features is acquired simultaneously. This allows
us to keep palm illumination constant and to stream images
for the processing at the sensor’s framerate. As a conse-
quence, the feature extraction and authentication time de-
pend solely on implemented feature processing algorithm
providing rapid authentication.

3. Palm detection and acquisition of ROI’s
mask image

Palm can be placed at various angles and distances.
Scales of observed palm features and filter masks should
be matched, and HOV algorithm divides processed image
into a grid with cells of fixed size, therefore, ROI should be
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properly rotated and scaled by means of image processing
before feature extraction. Thus, additionally to selection of
palm’s ROI, its rotation angle and scale are determined. To
maximize the amount of used biometric information we use
maximum palm area with repeatable features as ROI, Figure
3. ROI excludes hand edges and parts near fingers, because
these regions can be affected by ambient light and shadows.
To determine whether there is a palm in the image, and to
calculate ROI parameters, fingergaps (marked in Figure 3
as x, y, z and w) must be detected. A block diagram of
proposed algorithm is shown in Figure 1. Our palm de-
tection algorithms are handcrafted. To select parameters for
our algorithms, we have created a small training database of
multiple person palm images. To simulate normal authenti-
cation conditions palms were placed under different angles

and distances and under different background illuminations
(both - indoors and outdoors).

Palm detection begins with selection of palm skin region.
In the acquired images, palm skin region can be selected by
color because used dichromatic light (see Section 2) appears
in certain color when it is reflected from the palm [6]. Vari-
ations of palm intensity in the acquired images can be re-
duced (leading to increased accuracy of palm detection) by
forcing image sensor to determine the exposure using only
center of the image, where palm appears most frequently.
Region selection by color is done using only R and B color
channels as only they are employed in biometric feature ex-
traction; in such way the resources for algorithm implemen-
tation in embedded system are reduced.

The selection of the ROI mask (Figure 1, m) can be
achieved with simple threshold operations. This conclusion
is based on the analysis of the colors and intensities of palm
pixels and background pixels in the training database. It is
assumed that input image pixels do not represent palm if the
following properties are not met:

0.85 · b > r ∧ 0.1 < r < 0.98 ∧ 0.25 < b < 1, (1)

where r, b ∈ [0, 1] are R and B color intensities. Such
selection can be used with most background illuminations,
except outdoors under a direct midday sun. To smooth the
mask’s m contours of obtained region for finger gap de-
tection and to fill-in missing interior pixels, binary median
filter is used (Figure 1, mm).

It is considered that finger gaps can be located in regions,
where contour of the found mask in mm (Figure 1) forms
a certain ⌣ - shape. Such regions can be detected using a
simple morphological image filter, which masks are shown
in Figure 4. Result that is obtained by processing input im-
age mm with each finger gap mask (gleft and gright) is cal-
culated as follows:

gleft =
{
z| (mm)−z ∩Nleft = ∅ ∧ (mc

m)−z ∩ Pleft = ∅
}

(2)

gright =
{
z| (mm)−z ∩Nright = ∅ ∧ (mc

m)−z ∩ Pright = ∅
}

(3)

The combined result, representing finger gap regions as
groups of points, is calculated as g = gleft ∩ gright (Fig-
ure 1). For each group that exists in the acquired binary
image g only lowest middle point is left for further process-
ing. Finger gaps of different sizes can be detected because
finger-gap detection masks are sparse-like.

Not all found points represent finger gaps, e.g. notice that
in Figure 1, g 6 ⌣ - shape objects were found, whereas
only 4 of them are finger gaps. In order to determine which
of the found points denote finger gaps that belong to the
palm (thus, identifying whether there is a palm in the im-
age) found points are classified. To adjust parameters of
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Figure 4. Masks used for finger gap detection

the classifier, we first labeled all finger gaps in the training
database. Afterwards, we searched for a robust and easy to
calculate parameters for valid point selection. It was deter-
mined that squared distances between every pair of points,
as well as slopes of the lines connecting each pair of points
provide the desired results. Additionally, we determined the
range of values for selected parameters.
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Figure 5. Parameters used in finger gap classification

Unless a group of 4 points with satisfying characteristics
is found, it is assumed that the input image does not contain
a palm and a new image is acquired and processed. Once
the presence of a palm is confirmed, 4 fingergap points are
associated with palms binary region. Before feature extrac-
tion, the acquired palm’s region requires proper scaling and
rotation. The scale factor is determined by assuming that
the distance between y and w finger gaps should be K pix-
els (Figure 3). If the distance between points y and w in
the acquired unscaled image is d pixels, the image should
be scaled by a factor of K/d. The rotation angle is deter-
mined by assuming that the line connecting the points y and
w should be horizontal.

ROI (Figure 3) should exclude palm contour and finger
regions. We achieve this by performing morphological op-
erations, erosion and dilation, on smoothed palm’s mask im-
age mm (Figure 1).

To ensure rotation invariance, circle is used as a struc-
turing element; to achieve scale invariance, the size of the
structuring element (circle’s diameter) is associated with
finger gap distance d. An erosion operation is performed
using circle with diameter d as structuring element (Figure
1, me), and is followed by dilation operation with a circle of
a smaller diameter (e.g., 0.8 ·d, Figure 1, med). Afterwards,

one binary region is selected using previously obtained in-
formation about valid finger gap coordinates. The remain-
ing region is the binary mask (Figure 1, M ) determining the
ROI in the input image.

Now, both R and B color channels of the input image
(images Figure 1, fr and fb), as well as the mask M of the
ROI can be transformed into a new coordinate system S us-
ing affine transformations, in order to construct images with
correct rotation angle and normalized scale of the palm. Af-
terwards, transformed R and B color channel images (Fig-
ure 1, frS and fbS respectively) are filtered to extract bio-
metric information, obtaining complex images f⃗v and f⃗c
(Figure 1). Transformed ROI mask MS is used to remove
the image data located outside the ROI, thus producing bio-
metric data images f⃗vc and f⃗cc , which are fed to separate
HOV feature extractors (Figure 1).

4. Feature extraction

Feature extraction can be divided into two parts – pri-
mary part, when biometric information is extracted from
the R and B color channels of the transformed input image
(fRS and fBS ) as vector fields (⃗cv and c⃗c), and secondary
part, when acquired vector fields are described using HOV
(Figure 1).

4.1. Primary feature extraction

By using finger gap coordinate information, transformed
R and B color channel images – fRS

and fBS
– are acquired.

It is possible to extract line-like objects (LLOs) from these
images and obtain vector field representation of each image.
We compare two different approaches of biometric data pro-
cessing. Therefore, image filters of two types — NH-CMF
for general-purpose LLO extraction (direct image process-
ing) [12] and filters for vein and crease separation [6] — are
discussed and compared.

NH-CMF This filter responds to any LLO (which include
lines and gradients) of a certain width and intensity, pro-
ducing complex 2D field c⃗ (x, y) representation. A line-
extraction kernel M (x, y) is rotated by 8 different angles
φn, uniformly distributed in the range of [0, π). Thus,
n = 0...7 and φn = n×180

8 deg. For simplicity, general
case is observed here and images of both color channels
(fRS

and fBS
) are referred as ff . At each kernel’s rotation

angle, the scalar image ff (x, y) is convolved with the ro-
tated kernel and the following correlation value is calculated
for each image point (x0, y0):

cfn (x0, y0) = R

[∑
x,y

ff (x, y) ·M (x− x0, y − y0;φfn)

]
,

(4)



where R [x] = x+|x|
2 ; followed by:

c⃗f (x0, y0) =
∑
n

cfn (x0, y0) · exp (2i× φfn) , (5)

where i is the imaginary unit. Each response is a vector
c⃗f (x, y) that characterizes underlying LLO in two ways:

• its magnitude |⃗cf (x, y)| represents the similarity of the
neighborhood of the pixel ff (x, y) to LLO;

• its angle argf [⃗cf (x, y)]/2 represents the angle of the
characterized LLO.

As c⃗f is calculated for each color channel, filter result is
c⃗v and c⃗c. Images of both color channels are filtered using
kernels with different sizes, chosen to match either veins,
or creases more accurately. Apart from differentiating by
scale, filter is unable to segregate modalities that form the
particular extracted lines or gradients. Therefore, informa-
tion about both modalities appears in both resulting vector
fields – c⃗vc and c⃗cc – only in different proportions.

Vein and Crease Filter (V-CF) These filters were devel-
oped to produce 2D vector fields that contain information
about veins (vein filter, producing c⃗v) and palm creases
(crease filter, producing c⃗c) separately [6]. Compared to
NH-CMF, V-CF more accurately describes pattern of palm
elements: filter response’s magnitude |⃗cf (x, y)| forms a
finer pattern of extracted lines that closely corresponds to
lines (veins / creases) in the input image. These filters
are based on NH-CMF. Each correlation value cfn is cal-
culated as in (4) using scaled kernel that matches palm’s
biometric feature, and additional non-linear artifact removal
unit is used to remove responses that originate from pro-
cessing line endings, thinner lines, edges and noisy areas.
Thus, vein filter, which processes R channel image fR ex-
tracts mainly (for 70.6% of the responses [6]) vein patterns,
whereas crease filter, which processes B channel image fB
crease pattern (for 64.7% of the responses [6]). For the rest
of calculated responses, filters detect features of opposite
modality, other palm lines or noise. The percentage is cal-
culated taking area and response magnitudes into account
[6], which both are important for HOV.

4.2. Extraction of HOV features

The literature on feature extraction is very vast, but in
general feature extraction trends can be divided into two
classes: learning-based (LE [3], SFRD [4]) and hand-
crafted features (LBP [1], HOG [5]). Learning-based de-
scriptors lead to the state-of-art performance in many recog-
nition tasks, but the computational simplicity of hand-
crafted approach is more desirable in our case. This choice
is dictated by limited computational power of the proposed
embedded biometric system. None of the above-mentioned

Input vector

field with a grid

Figure 6. Extraction of HOV features

hand-crafted features can be directly applied to our recog-
nition problem. The reason for that is the specificity of the
input, which is a vector field obtained in the primary stage
of the feature extraction process. Each pixel (x, y) in the
input signal is described with two parameters: magnitude
c(x,y) and angle α(x,y) ∈ [0, 2π). In order to utilize both
parameters a novel descriptor HOV is developed.

HOV approach inherits some ideas both from LBP and
HOG descriptors. In order to save the spatial information
about the object the vector field / image is divided into K2

cells with a grid of the size K × K (K = 10 in Figure
6). Next, a spatially enhanced histogram h is calculated by
sequential concatenation of the cell histograms into a single
vector (similar to LBP approach [1]). The calculation of cell
histogram is similar to HOG approach [5]. Angular values
of each pixel define the corresponding bins/positions in the
1D cell histogram, while magnitudes define the amount to
be added to the corresponding bins, Figure 6. The soft bin-
ning principle [5, 15] is incorporated in the process of cell
histogram calculation. With soft binning each pixel benefits
to more than one bin, assigning proportionally higher frac-
tions of the magnitude to the closest bin and respectively
smaller fraction to the distant bin.

The length of the HOV feature vector is N = K2 ·Ncell,
where Ncell is the number of bins in the cell histogram. The
final step is normalization of the sum of histogram h ele-
ments to one: ĥi = hi/

∑N
j=1(hj), i = 1, . . . , N , where ĥi

are the entries of the normalized HOV histogram.



Figure 7. Example of ground-truth data for the database

5. Experimental results
Since the capturing of images requires special conditions

(specific image sensor and illumination), the database of
palm images captured with our developed device is intro-
duced. The database contains data for Np = 100 individu-
als with Nim = 20 images for each person resulting in 2000
images in total. Moreover, each palm image in the database
is supplemented with ground-truth data including Pgap = 4
manually marked finger-gaps (’o’-markers in Figure 7) and
PROI = 7 characteristic points on the palm (’*’-markers in
Figure 7, hereinafter referred to as ROI points). The ROI
points are linked to palm vein intersection, because these
are easier to mark by the human experts. ROI points are in
the same positions for all images of the person. Obviously,
ROI points differ for different individuals, because of vari-
ability in the vein patterns. The database and ground-truth
data are utilized in the evaluation of all algorithmic blocks
of the proposed system. The database is publicly available
for the research community upon request.

The detection, alignment and recognition stages of the
algorithm and their mutual influence are evaluated next to
understand the impact of each stage on the final recognition
precision.

The result of the detection is represented by the binary
mask covering the ROI in the input palm image, Figure
1, M . The database includes only those images, where
proposed palm detection algorithm can properly detect the
palm.

The general purpose of the alignment stage is to min-
imize the variance in appearance of the object of interest
in images. Alignment is used to exclude mismatches re-
sulting from rotation, translation and scaling. Obviously,
in well aligned images the distribution of ROI points from
their mean positions is minimal and vice versa. Ideally af-
ter alignment of 20 images of the person the corresponding
ROI points should match perfectly. However, the ground-
truth data incorporates some nonlinear deformations, which
can not be corrected with affine transformations. Therefore,
the inherent error of ground-truth data is analyzed first. For
this purpose the ROI points of each person are aligned using
RANSAC algorithm, Figure 8. Then the distances between
aligned ROI points and their corresponding mean positions
are calculated (distances d1, d2, d3, . . . in Figure 8). These
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

Values of misalignment distances (  d
RANSAC

 , d
ROI

 )
C

u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

 

 

 ECDF( d
RANSAC

 )

 ECDF( d
ROI

 )

Figure 9. ECDF for dRANSAC and dROI vectors

distances are next normalized and concatenated into a single
vector dRANSAC = (. . . , d1/dn1, d2/dn2, d3/dn3, . . . ),
where the normalizer dni is the total distance between
finger-gaps in the current image i, Figure 8. The length
of the vector dRANSAC is Np · Nim · PROI = 14000, if
the normalized distances are calculated for all ROI points
in all images of the database. Next, the Empirical Cumula-
tive Distribution Function (ECDF) is calculated for the data
in vector dRANSAC. The same analysis is performed for
the proposed ROI detection and alignment algorithm. In
this case the vector of normalized distances is designated as
dROI. ECDF of dROI represents the precision of alignment
of each person’s palm images with the proposed algorithm.

Corresponding ECDF curves are displayed in Figure 9.
In the case of perfect alignment of vein-networks the ECDF
would be a step function at value 0. In Figure 9 one can
see that the alignment of vein-networks based on manu-
ally marked ROI points outperforms the proposed automatic
ROI alignment algorithm. Impact of the localization errors
on the recognition performance is also determined.

The analysis of final recognition stage is performed with
the introduced database. The Equal Error Rate (EER) is
selected as the performance criteria. The comparison of
HOV feature vectors is based on Nearest Neighbor Classi-
fier (NNC) incorporating histogram intersection as distance
function. In order to identify the amount of error introduced
by the automatic ROI detection module two sequences of
experiments are performed. In the first sequence all images



Table 1. EER values in % for various sequences of experiments and filters
NH-CMF + HOV + NNC V-CF + HOV + NNC

Manual alignment Automatic alignment Manual alignment Automatic alignment
Veins Creases Veins Creases Veins Creases Veins Creases

HOV
parameters

K = 12
Ncell = 18

K = 12
Ncell = 18

K = 6
Ncell = 15

K = 6
Ncell = 15

K = 12
Ncell = 18

K = 12
Ncell = 18

K = 6
Ncell = 15

K = 6
Ncell = 15

EER, % 0.99 3.33 1.89 5.15 0.79 1.98 1.84 3.62
EER,%

after fusion 0.77 1.82

in the database are aligned with RANSAC algorithm based
on manually marked ROI points (expected misalignment er-
ror is represented with ECDF(dRANSAC) in Figure 9). The
images are then normalized (to the same scale, position and
rotation), filtered and cropped as described in Figure 1. This
sequence is called manual alignment for simplicity. In the
second sequence of experiments the processing pipe-line is
exactly the same as introduced in Figure 1, meaning that all
stages detection alignment and recognition operate in auto-
matic mode. The expected misalignment error in this case
is represented with ECDF(dROI) in Figure 9. Hereinafter
this sequence is called automatic alignment. HOV based
recognition algorithm has two parameters to be optimized:
grid parameter K and number of bins in the cell histogram
Ncell. The following values are evaluated: K = {3, 6, 12}
and Ncell = {9, 12, 15, 18}. The size of the vector field is
both sequences of experiments is 384 × 384 pixels. Vector
field itself is calculated with two approaches: NH-CMF and
V-CF.

The experimental results in Table 1 show, that specially
designed V-CF filter outperforms more general NH-CMF
approach. Also the EER in the automatic alignment mode
is higher then the one in the case of manual alignment. The
reason for that is misalignment error, which is greater for
the proposed ROI detection approach, Figure 9.

For comparative purposes the EER is also obtained for
HOG [5] feature vectors in combination with NNC. The
distance function of the NNC is histogram intersection. The
HOG descriptor can be explicitly defined with the following
parameters taking into account that the overlap of the blocks
is fixed at 50% [5]: η is the size of the square cell in pixels;
ς is the block regioning factor meaning that each block is
divided into ς × ς cells; β is the number of orientation bins
in the histogram of the cell. The following values of the
parameters are evaluated in the experiments both in man-
ual and automatic alignment modes: η = {16, 32, 64, 128},
ς = 2, β = {6, 9, 12, 15, 18}. The results are introduced
in Table 2 showing the significant transcendence of the pro-
posed HOV descriptor over a well known HOG approach.

The final stage of the recognition is fusion. According
to the classification in [13] the fusion is done in the simi-
larity score level. In this case the output classifier is using

Table 2. Comparison of HOG and HOV descriptors
Alignment Manual Automatic

Veins Creases Veins Creases
HOG

parameters
η = 16
β = 12

η = 16
β = 18

η = 16
β = 18

η = 128
β = 15

HOG
EER, % 5.03 5.34 7.21 7.07

HOV
EER, % 0.79 1.98 1.84 3.62

similarity scores obtained from two modalities as new fea-
tures. The output of the combining classifier (perceptron
in this case) is a new similarity score. In other words the
perceptron tends to predict the class as either ”genuine” or
”impostor” based on the input similarity scores from two
modalities. The introduced database is not split into training
and test sets, therefore in order to avoid over-fitting only a
small fraction of data (5%) is used for training and all avail-
able data is used for testing. The results are introduced in
Table 1 and some of the values are highlighted in bold to
demonstrate the lowest EER values.

6. Conclusion

To the best of our knowledge the introduced bi-modal
palm biometric system is the first one capable of captur-
ing two biometric parameters, palm veins and palm creases,
synchronously with a single image sensor. Because of
the special bi-spectral illumination required for the syn-
chronous biometric parameter acquisition effective and sim-
ple detection of ROI in the palm image is possible. Since
the capturing of images requires special conditions, the pa-
per introduces a new palm image database. The database is
supplemented with ground-truth data simplifying the error
analysis of all algorithmic blocks.

The purpose of the paper is to introduce the combina-
tion of algorithms for bi-modal palm biometric system and
to analyze the error propagation in the automatic recogni-
tion pipeline in order to identify the blocks to be improved.
The experimental part shows that palm and ROI detection
principle is robust. The precision of the automatic align-
ment stage is below the performance of the manual align-



ment utilizing the ground-truth data collected by the human
expert, Figure 9. The misalignment error in the automatic
recognition pipeline leads to a decreased performance: EER
= 1.82% versus EER = 0.77% in the case of manual align-
ment, Table 1. The important conclusion is that approxi-
mately (1.82−0.77)/1.82 = 58% of the final EER (1.82%)
comes from imperfectnesses in the alignment stage, while
0.77/1.82 = 42% of the EER is due to feature extraction
and classification module.

The proposed recognition results can be considered as a
baseline for the introduced database collected with the novel
multi-modal palm biometric system.
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